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ABSTRACT

This report presents the results of an unclassified review and discussion of past
U.S. programs directed toward the infrasonic monitoring of atmospheric nuclear
explosions. The report is one of four resulting from a DOE (Department of Energy)
seventeen month investigation and review of past work in infrasound. The report is
focused on a discussion of only low-yield (<4 KT) tests which are of current concemn for
the monitoring of a CTBT.

In brief, the U.S. monitored virtually all atmospheric nuclear explosions conducted
by China, France, the former Soviet Union and the United States. The first nuclear
explosion to be infrasonically monitored was the 21 KT air-dropped Able test which was
conducted at the Bikini test site in the south-Pacific on June 30, 1946 [DOE, 1994], and the
last nuclear explosion which was infrasonically monitored was the 3 MT Chinese test
which occurred on November 17, 1976.

Although there was apparently no single overall monitoring program per se, it is,
nevertheless, convenient to think of the work which was conducted as being accomplished
in three programs: (1) the monitoring of foreign nuclear explosions at significant range
from the various test sites; (2) the monitoring of U.S. nuclear tests at long ranges from the
NTS (National Test Site) and (3) the monitoring of U.S. tests at the NTS at short ranges:
typically < 270 km. The long range monitoring program was conducted under a program
accorded the acronym: USAEDS (U.S. Atomic Energy Detection System).

All three of the programs were based on the use of a number of distributed
monitoring stations and those associated with long range monitoring were typically
equipped with an array of four very sensitive microbarograph sensors. Because some of
the station locations which were utilized in the monitoring of foreign tests remain classified,
no discussion of this aspect of the U.S. monitoring program is discussed herein except to
note that the network performance was deemed to be quite good.

The review of the detection performance of continental stations used to monitor
U.S. tests at the NTS indicates that maximum detection ranges for explosions of ~ 1 KT
can vary from 1350 km to 3585 km depending on the noise levels at a particular station and
on the environmental conditions along the propagation path.

In addition, recent work utilizing still classified data acquired during the existence
USAEDS infrasound program [Clauter and Blandford, 1996] as well as other independent
estimates [Christie, 1995] is discussed which indicates that a proposed 60 station
infrasound network can ensure detection of a 1 KT atmospheric test with a location
uncertainty of 100 km over most of the earth. Because of low station density in the
southern hemisphere, it will likely prove necessary to augment the currently planned 4-
element arrays with additional sensors to increase array gain for a number of southern
hemisphere stations.
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1.0 INTRODUCTION

This report presents an overview and discussion of past U.S. efforts which were
directed toward the infrasonic monitoring of atmospheric nuclear explosions. The report is
one of four resulting from a DOE (Department of Energy) sponsored seventeen month
investigation and review of past work in infrasound. Other project related reports include:
an annotated bibliography of selected papers in infrasound [McKisic (1996a)]; a collection
of relevant en;/ironmental data involving northern and southern hemispheric temperature,
wind speed and cloud cover data [McKisic (1996b)]; and a comprehensive literature
review on infrasound and infrasonic monitoring [McKisic (1997)]. The report is focused
on a discussion of only low-yield (< 4KT) tests which are of current concern to the
monitoring of a CTBT (Compréhensive Test Ban Treaty).

In brief, the U.S. monitored virtually all atmospheric nuclear explosions conducted
by China, France, the former Soviet Union and the United States. The first nuclear
explosion to be infrasonically monitored was the 21 KT air-dropped Able test which was
conducted at the Bikini test site in the south-Pacific on June 30, 1946 [DOE, 1994], and the
last nuclear explosion which was infrasonically monitored was the 3 MT Chinese test
which occurred on November 17, 1976.

Although there was apparently no single overall monitoring program per se, it is,
nevertheless, convenient to think of the work which was conducted as being accomplished
in three programs: (1) the monitoring of foreign nuclear explosions at significant range
from the various test sites; (2) the monitoring of U.S. nuclear tests at long ranges from the
NTS (National Test Site) and (3) the monitoring of U.S. tests at the NTS at short ranges:
typically < 270 km.

All three of the programs were based on the use of a number of distributed
monitoring stations each of which was typically equipped with an array of four very
sensitive microbarograph sensors. Because some of the station locations which were

utilized in the monitoring of foreign tests remain classified, no discussion of this aspect of




the U.S. monitoring program is discussed herein except to note that the network
performance was deemed to be quite good.

The programs involved with the long range monitoring of foreign and U.S.
atmospheric nuclear explosions was given the name, U.S. AEDS (Atomic Energy
Detection System) or USAEDS, and was conceived following World War II when it
became clear that nations other than the U.S. would one day develop a nuclear capability
and that U.S. national security dictated monitoring such efforts. As pointed out by
[AFTAC, 1992], the "USAEDS came into being when General Dwight D. Eisenhower
Army Chief of Staff, directed General Carl A. Spaatz, Commanding General of the Air
Force Corps, to 'assume responsibility for detecting atomic explosions anywhere in the
world"."

The basic period of operation of the USAEDS appears to have covered the time
period extending from 1948 to 1975 when the system was largely dismantled, although the
two 21 KT U.S. air-dropped tests at Bikini Atoll in 1946 were also evidently acoustically
monitored. The acoustic monitoring of the very early U.S. atmospheric tests conducted
through 1950 presumably utilizéd conventional low-frequency microphones with all further
tests monitored using microphones equipped with Daniels pipe front end noise reducers.

The U.S. Army Signal Corps first operated the acoustic stations which began
sending acoustic reports to AFTAC (Air Force Tactical Operations Center) on a regular
basis beginning on September 1, 1948. In 1969, operation of the USAEDS system was
transferred to AFTAC. During the time period extending from 1951 through 1961 the
USAEDS typically involved the utilization of at least 15 relatively fixed stations as well as
stations operated on the west coast of the U.S. at various locations by the NEL (Naval
Electronics Laboratory) and on the east coast of the U.S. by the NBS (National Bureau of
Standards) at Washington, DC and by the AFCRL (Air Force Cambridge Research

Laboratories) at Boston, MA.




Unlike the component of USAEDS involved with the monitoring of foreign nuclear
éxplosions, the two programs which were involved in monitoring U.S. atmospheric tests
can be discussed in some detail as only the locations of two of the long range stations
which were utilized remain classified or "highly sensitive".

For purposes of exposition, the remainder of the report is divided into four
sections. Section 2.0, Subsection 2.1, presents a discussion of results from the program
involved with the long-range monitoring of U.S. tests at the NTS where the low-yield tests
of current interest were conducted. In addition to indicating network performance, a
discussion and description of the instrumentation used is also presented and tables of noise
data are provided to illustrate the fluctuations in noise levels as a function of time.

Section 2.0, Subsection 2.2, briefly discusses the short range monitoring effort
which was conducted by the Sandia National Laboratory and, as pointed out by Reed
(1996), was entirely separate and distinct from the long range monitoring programs.
Section 3.0 provides two assessments of infrasonic monitoring capability based on
analyses of all stations used in the long range monitoring of U.S. and foreign nuclear
explosions. The first is based on an analysis of 781 nuclear explosions, involves the use
of logit and maximum-likelihood models and derives probability of detection as a function
of explosive yield and source-to-receiver range [Nicholson, 1995]. The second assessment
utilizes network modeling software developed for seismic monitoring ("NETSIM") in
conjunction with empirically derived pressure-range and station-noise curves, and an
assumed probability of detection model [Clauter and Blandford, 1966]. Results are
presented for magnitude-probability and radius of uncertainty contours for a proposed 60
station infrasonic monitoring network. Section 4.0 presents a brief discussion of results
and provides a short account of the inception of the VELA program. Section 5.0 provides a

listing of the references cited in the body of the report.




2.0 THE INFRASONIC MONITORING OF U.S. ATMOSPHERIC
NUCLEAR EXPLOSIONS

2.1. Monitoring at Long Ranges

During the time period extending from June 30, 1946 until November 4, 1962, the
U.S. conducted 210 atmospheric and 5 underwater nuclear tests. Except for the TRINITY
explosion on July 16, 1945 and the bombs dropped on Hiroshima on August 5, 1945 and
on Nagasaki on August 9, 1945, all U.S. atmospheric explosions were monitored by a
number of infrasonic monitoring stations. .Those explosions having yields of 4 KT and
below are indicated in Table 1 [DOE, 1994].

The infrasonic monitoring of U.S. atmospheric nuclear explosions was conducted
by three agencies: the U.S. Navy NEL (Naval Electronics Laboratory) in San Diego,
California, the U.S. Army SCEL (Signal Corps Engineering Laboratories) and by the NBS
(National Bureau of Standards) in Washington D.C. Typically, 18 stations were involved
in the monitoring but the number evidently varied from test to test. Table 2 provides a
geographical listing of sixteen unclassified infrasonic monitoring stations and the
responsible agency for each station. Figure 1 provides a geographical map of some station
locations and distances from the NTS site.

As of this writing, most of what has been reconstructed with respect to U.S.
monitoring of U.S. Tests is derived from five recently declassified "WT" reports:
OPERATIONS BUSTER AND JANGLE (1952a); OPERATION TUMBLER-SNAPPER
(1952b); OPERATION IVY (1953); OPERATION UPSHOT-KNOTHOLE (1954) and
OPERATION CASTLE (1955). Inspection of Table 1 shows that there were 6 explosions
in these test series having yields below 4 kT.

Instrument descriptions are provided in three appendices to the BUSTER &
JANGLE "WT" report [Olmsted, 1952a)]. In particular, the NEL (Naval Electronics

Laboratory) participation is described in Appendix A by McLoughlin and Johnson (1951),
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Figure 1. Geographical locations and distances of 14 infrasonic array stations from the
NTS. [Figure adopted from the OPERATION UPSHOT-KNOTHOLE station deployment
[Olmsted and Nowak (1954)] .




the Army Signal Corps participation is described in Appendix B by Crenshaw, Lonnie and
Pressman (1952) and the NBS (National Bureau of Standards) participation is described in
Appendix C by Chrzanowski, et al., (1952).

The NEL participation involved the occupation of four sites: Oahu, HI; Eglin AFB,
FL; Eagle Mountain Lake, TX; and San Diego, CA. The Texas and Florida recording
stations used four element arrays each element of which was made up of a low-frequency
Rieber microphone connected to a 1,000 tapered Daniel's pipe array designed by the Army
Signal Corps. The sensors making up each of the arrays were deployed in a quadralateral

pattern as illustrated for the case of the array at Eagle Mt. Lake, TX in Figure 2.
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Figure 2. The infrasonic microphone deployment for the NEL station at Eagle Mountain
Lake, Texas during the BUSTER & JANGLE test series.
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The monitoring at the San Diego station was described as performed "on an unofficial
basis" and only two microphones were available. The NEL and the NBS were "guests” at
the Oahu, HI site and simply attached their recording ihstruments to the four element array
which had been installed by the Army Signal Corps.

The Army Signal Corps participation also involved the occupation of four sites:
Pyote, TX; Camp Breckinridge, KY; Belmar, NJ; and Oahu, HI. Each site consisted of a
single four element sensor array with each element consisting of a condenser microphone
equipped with a noise reducing array of length 1740'. The array had 348 openings with a
5' spacing between each opening. This design was intended to reduce the background
ambient noise by a factor of 18. The output of each sensor (microphone and pipe array)
was connected by wire lines to a central processing station.

For the BUSTER & JANGLE test series "the microphone and the associated
circuitry were modified to increase the response to periods as long as one minute. The
response of the system to pressure variations in the infrasonic region has been determined
experimentally and is illustrated in graphical form in Figure 3. A remotely controlled
calibrator was also installed at each outpost emplacement (i.e., at each sensor location) to
check the system performance, as required" [Crenshaw, Lonnie and Pressman (1952)].

The NBS participation in the BUSTER & JANGLE test series involved the
occupation of three stations: Fort-Lewis-McChord AFB, WA Oahu, HI and Washington,
DC. The basic sensor utilized by the NBS is discussed in significant detail by
Chrzanowski, et al., (1952) and it is perhaps sufficient to simply provide a brief summary.
In brief, the NBS developed two types of microphones of the capacitive diaphragm type
which were referred to as either a "single-unit microphone" or a "ring-unit microphone”.
Each sensor type utilized the same capacitive pressure sensing element but different
electronic oscillator circuits. In the single-unit microphone, the capacitbive element
functioned "as a variable condenser in the shunt of RC leg of a Wien bridge oscillator”

whereas the ring-unit was designed for use as an element in a four element array of sensors
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Figure 3. The frequency response of the improved infrasonic system M-2. [Figure adopted
from Crenshaw, Lonnie and Pressman (1952).]

and, accordingly, the capacitive sensors "formed the variable capacitances in a four-section
phase shift oscillator.”

The two sensors were fronted by different noise reducers. In the case of the single-
unit microphones, the 1000' pipe array developed by the Army Signal Corps was utilized.
This type of array "was made up of pipe in 10' lengths tapering from 1.5" diameter at the
center to 0.5" pipe at the ends. At 10’ intervals, inlet plugs provided communication to the
atmosphere. Three single-unit sensors were deployed at the NBS outside of Washington,
DC.

The ring-microphones utilized noise reducing elements made up of 0.75" diameter
garden hose with hypodermic needles of length 1.5" inserted along the length of the hose.
The basic sensor arrangement is described as "a double W (WW)" with the microphone
sections connected to the base of the W's". The straight lines composing the W's were
about 250" long. "To give equal weight to each interval of the hose, the needles were
spaced about 16 feet apart near the microphone cans and about 8 feet apart near the end of a

250 hose." Although no diagram was provided, the NBS configuration was evidently as

12




in Figure 4. For BUSTER & JANGLE, four single- and four ring-microphones were

deployed at the Fort Lewis, WA station.

Garden Hose
250 ft Noise Filter

500 ft

* Denotes Capacitive Sensing Element

Figure 4 The double-W ring-microphone arrangement used by the NBS in monitoring
explosions from the BUSTER & JANGLE test series. The straight line segments are 250'
lengths of garden hose and the capacitive sensing elements are located at the base of the
W's. [Figure constructed based on a description provided by Chrzanowski, et al., (1952).]

In OPERATION JANGLE, the Sugar event was a surface explosion and Uncle was
a crater event indicating an explosion detonated just below the ground surface. The
BUSTER and JANGLE test series of explosions took place éver the time period from
October 22, 1951 to November 29, 1951, eight stations were utilized and Table 3
summarizes the performance of the monitoring network for the two low yield 1.2 KT
explosions. The station deployment for the test series is provided in Figure 5.

As indicated in Table 3, six stations detected the surface explosion and seven
stations detected the underground event. The surface explosion was detected to a maximum
range of 2818 km at Eglin AFB, Florida, and the underground test was detected to a
maximum range of 3585 km at Belmar, New Jersey. The surface explosion was evidently
not detected at the Washington, DC station (3400 km) and the Belmar, New Jersey station
(3710 km) because of high noise levels at the time of signal reception: 13 pbar and 49
[tbar, respectively. In addition, Olmsted (1952a) notes that the noise reducing arrays at the
Belmar, New Jersey station were not of the optimum design.

Inspection of Table 3 clearly shows that propagation speeds are much higher to the

east than to the west and it was hypothesized that this circumstance was due to westerly

13
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winds in the stratosphere. Figure 6 shows that this hypothesis was quite plausible as the
stratospheric winter winds are clearly very strongly to the east.

Azimuthal errors for the 1.2 KT surface explosion were reported as: 0.8°S, 1._80,
0.09, 6.0°S, aand 5.99S for stations, Pyote, Ft. Lewis, Eagle Mt. Lake, Breckinridge and
Eglin AFB, respectively. For the underground explosion, azimuthal errors were reported to
be: 0.20N, 5.79F, 0.00, 0.1°N, 4.99S, 3.5°N and 5.8°N for the Pyote, Ft. Lewis, Eagle
Mt. Lake, Breckinridge, Eglin AFB, Washington, DC, and Belmar stations, respectively.

For possible interest to those involved in designing and positioning infrasonic
arrays, Table 4 provides a summary of the station noise levels reported during the conduct
of the BUSTER and JANGLE test series, and Figures 7, 8 and 9 provide, respectively,

graphical waveforms for the 1.2 KT underground explosion recorded at

120 T
F E% i \\.\\ : H ; B
L ~ iy i} —oe— 20N
100 3 ’ ; il —— 3ON oo —
i i RN — & - 4N 4
Height (km) [ Zonally Averaged Wind Speed | - . - -X-- 50N

80 |- Latitudes:- 202N, 30N, 40°N, SOUN oo e b oo

- January: CIRA Data |
60 - -
40 [ O _
pJ J —

-60 40 20 0 20 40 60 80

Wind Speed (mv/s)

Figure 6. Zonally averaged winds for latitude 400N for the month of January. Positive
values of wind speed indicate that the winds are from the west-to-east. [Figure constructed
based on the CIRA-86 data set.]
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BELMAR-UNCLE —’
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Figure 7. Graphic records for the 1.2 KT underground explosion as recorded at the
Belmar, NJ infrasonic array manned by the U.S. Army Signal Corps. The noise
background was reported as 2.0 pbar and the maximum signal amplitude as 5.8 pbar. The
four traces are evidently from each of the four microphones making up the array and the

second channel presumably had background or electronic noise problems. [Figure adopted
from Crenshaw, Lonnie and Pressman (1952).]
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Belmar, NJ, the 1.2 KT surface explosion recorded at Ft Lewis and the 1.2 KT
underground explosion recorded at Washington, DC.

The TUMBLER-SNAPPER test series took place during the time period extending
from April 1, 1952 through June 5, 1952 and involved the detonation of two air dropped 1
KT deviceé: Able and Baker. There were eight recording stations for this test series: Ft.
Lewis, Pyote AFB, Breckinridge, KY, Washington, DC, Belmar, Fairbanks and Oahu.
None of the stations detected the Able explosion as they were not operational at the time. Of
the eight stations operational for the Baker test, only two detected the explosion: Ft. Lewis,
WA, (1230 km) and Pyote AFB, TX, (1350 km) with azimuthal errors: 0.6° and 2.30N,
respectively. The upper panel of Table 5 summarizes the performance and signal
characteristics determined for the two detecting stations and for the much lower yield
explosions detonated in the UPSHOT KNOTHOLE test series (see below).

Inspection of Table 5 indicates that the maximum detection range was 1350 km
(Pyote AFB, TX) which is considerably shorter than the 2818 km detection range for the
1.2 KT surface explosion detonated in the BUSTER and JANGLE test series and for the
3585 km detection of the 1.2 KT underground explosion at Belmar, New Jersey, during
the same test series. Table 6 provides noise data reported by Olmsted (1952b). A
comparison of the station noise data in this table and with that shown in Table 4 for the
BUSTER and JANGLE test series indicates that the noise levels were generally higher
during the low yield explosions in TUMBLER-SNAPPER than in BUSTER and
JANGLE, although the noise level at Fairbanks appears to be quite low; i.e., 0.7 pbar. The
reason why the stations east of the NTS failed to detect the Baker shot may be due to the
fact that the stratospheric winds were not as strongly westwardly as shown in Figure 10

which plots zonally averaged winds for the latitudes 200N, 30°N, 40°N and 500N.
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Figure 10. Zonally averaged winds for latitudes 20°N, 30°N, 40°N and 50°N for the

month of April. [Figure constructed based on the CIRA-86 data set.]

The OPERATION IVY atmospheric test series was conducted during the fall of
1952 at the Enewetak test site in the south Pacific. The series consisted of only two
explosions: a 10.4 MT surface explosion and a 500 KT air dropped explosion and,
accordingly, the results of the tests are not particularly relevant for the low yield explosions
of interest herein.

The OPERATION UPSHOT-KNOTHOLE test series was conducted during the
time period extending from March 17, 1953 to June 4, 1953 and involved the detonation of
two air dropped explosions of very low yield: 0.2 KT. Fifteen stations were operative for
the test series: some at very long ranges from the NTS because, presumably, the explosive
yields planned for the test series were as high as 61 KT. Typical stations operative for the
test series have been indicated in Table 2.

For the very small yield tests, oﬁly a very few stations were able to detect the events

as indicated in the lower two panels of Table 5. For the first 0.2 KT explosion, detonated
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on March 31, 1953, the maximum detection range was 1350 km and for the second
explosion, detonated on April 11, 1953, the maximum detection range was only 530 km.
In an attempt to understand a difference of 2.6 in detection range, Table 7 provides
measured noise levels recorded at the various stations during the conduct of the test series
and it is evident that the noise level at the 1350 km station (Pyote AFB, TX) was over three
times higher on April 11, 1953 than on March 31, 1953. Inspection of Table 5 shows that
the maximum peak-to-peak signal level at the Pyote AFB on March 31, 1953 was relatively
small, i.e., 6 pubar.

The work summarized above generally support the views of some in the infrasonic
monitoring community that 4-element station spacing should not exceed 2,500 km to assure
a global network detection capability at a 1 KT threshold [see, for example, Christie
(1995).] The results also emphasize the importance of selecting infrasonic sites with

naturally occurring low noise levels.

2.2. Monitoring at Short Ranges

The monitoring program conducted by the Sandia National Laboratory is described
in two reports authored by Reed (1969 & 1974). The Sandia effort was initiated in 1951
following the Operation RANGER test series which was conducted during January and
February of 1951. According to the DOE (1994), this test series involved five air-dropped
nuclear explosions: two having yields of 1 KT (1/28/51 and 2/1/51); two having yields of 8
KT (1/28/51 and 2/2/51); and one having a yield of 22 KT (2/6/51). Evidently, one or more
of these tests produced strong acoustic effects (broken windows, etc.) in the communities
surrounding the NTS and, accordingly, in 1951 a Blast Prediction Unit was established.

The Blast Prediction Unit was assigned three primary responsibilities: to determine
the causes of the high acoustic levels out to ranges of approximately 250 km; to develop
methods of predicting the levels to be anticipated in the communities surrounding the NTS
from atmospheric tests of varying yields and configuration; and to make infrasound

recordings for research and for verification purposes. During the time period extending
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from 1953 to 1962 there were approximately "15,000 wave passages" recorded by the
program at station ranges extending from about 7 km to 270 km. The microbarograph
records were recorded on paper at a speed of 25-mm/s so that up to 15 m of paper was
produced in monitoring several of the tests. All of the data acquired during the program
have been archived at Sandia and are available as unclassified records [Reed (1974) and
Bedeaux (1996)].

The microbarograph sensors used in the program consisted of a "Bourdon tube
aneroid barometer cell originally built by the Wiancko Co. This actuated an electric pickup
that modulated an FM carrier signal which was hard wired to signal amplifiers. Various set
ranges could be switched to allow approximately full-scale recording on the most sensitive
channel, called the A-pen, based on predicted wave amplitude” [Reed (1974)]. The "high
frequency response for this system was generally limited by the recorder to lower than
about 30 Hz. Low-frequency response was adjusted by a bleed plug in the back chamber
surrounding the Bourdon tube. Usually, a flat response to 0.05 Hz was desired. On
occasions of very large explosions (multimegatons) with long compression durations, this
bleed plug was set for 50 seconds of bleed time, but this was not very easily or accurately
obtained" [Reed, 1974].

A listing of stations which were involved in monitoring explosions having a yield
of 4 KT or less is provided in Table 8 and a geographical map of station locations is
provided in Figure 11. As indicated, there were primary and secondary stations involved
and, as shown later, the number of stations varied from test event to test event and station
ranges varied at a particular site. In the table, the indicated station bearing and range
coordinates are referenced to Area 7 of Yucca Flat. For the most part, station ranges are
272 km or less with the exceptions being the Albuquerque, NM and Pasadena, CA
stations.

For the‘ indicated station ranges, Reed (1974) notes that there can be several

"acoustic wave packets that arrive over a 10-minute time span.” The various arrival packets
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Table 8. Station locations used to study the climatology of airblast propagations from NTS
atmospheric nuclear explosions. The distances and bearings are referenced to Area 7,
Yucca Flat, and C for a particular location indicates "close" and F indicates "far". [Data
adopted from Reed (1969).]

Primary Stations

Station Bearing (Deg) Range (km)
Bishop, CA 278 210.9
Boulder City, NV 139 163.4
Caliente, NV 64 1554
China Lake, CA 223 2134
Indian Springs, NV 142 63.1
Las Vegas, NV 142 129.2
Lund, NV 25 218.5
St. George, UT 90 217.6
Tonopah, NV 317 146.0

Secondary Stations

Albuquerque, NM 110 ~890.0
Beatty, NV 257 67.1
BJY,NV 205 6.8
Cedar City C 076 269.4
Cedar City F 076 271.0
Cedar City, UT 075 272.3
Coaldale, NV 302 188.5
Coyote, NV 050 65.2
CP-1 191 16.7
CP-1-P 179 14.3
CP-M1 185 17.0
FFT 179 31.0
FFT-P 170 27.2
FFO 178 43.6
Glendale, UT 110 139.9
Goldfield, NV 304 129.2
Goldfield C 304 127.1
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Table .8 (Cont.). Station locations used to study the climatology of airblast propagations
from NTS atmospheric nuclear explosions. The distances and bearings are referenced to
Area 7, Yucca Flat, and C for a particular location indicates "close” and F indicates "far".
[Data adopted from Reed (1969).]

Station Bearing (Deg) Range (km)
Henderson, NV 39 141.4
Indian Springs C 154 62.5
Indian Springs F 149 68.5
Las Vegas C 137 101.2
Las Vegas F, 137 102.4
Mercury, NV 177 472
MER-P 172 42.7
MOB 189 17.0
OBA 183 19.4
Pasadena, CA 212 374.6
SCU 178 40.53
St. George C 082 210.9
St. George F 082 212.1
UCC 180 19.5
XFM 185 21.2
XMF-1 185 21.0
XMF-2 185 21.0
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are conveniently referred to as troposphereic, ozonospheric and ionospheric arrivals and
exist at a given time because of a station's particular range from NTS and the existing
propagation conditions at the time of an explosive event. Indeed, several propagation paths
are identified in addition to scattered or diffracted waves:

« near ground propagation downwind or beneath a temperature inversion (a
tropospheric path)

« sound-duct propagation caused by jet stream winds at altitudes extending from 6
km to 10 km (a tropospheric path)

» downwind ducted propagation caused by the presence of the warm layer in the
ozonosphere at an approximate altitude of 50 km (an ozonospheric path)

« seasonally dependent propagation guided by the ionospheric duct at an
approximate altitude of 100 km (an ionospheric path).

In exhibiting seasonal patterns for infrasonic propagation to the various
microbarograph stations, Reed (1969) normalized the yield data to correspond to a
"reference yield" of 1.0 KT for a free air blast. To do so, it was necessary to remove the
height-of-burst (hob) or "Mach stern" effects which results in higher apparent yields owing
to the constructive interference between the ground reflected and the direct or outgoing
shock waves. A

The procedure utilized by Reed (1969) involved the introduction of a scaled hob

defined according to the relation

N —
hob -

where the superscript "s" referes to the scaled value, the superscript "a" refers to the actual
height of burst and W is the explosive yield in KT. Next a quantity referred to as the
apparent yield, Wy, was introduced by fitting the ratio (Wa/W) to the scaled height of burst
computed from unspecified 2 1b/in2 over-pressure contours evidently established from
measured data on nuclear explosions of various yields. The curve utilized by Reed (1969)

is shown in Figure 12 which illustrates that the optimum detonation height for a 1 KT
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device is approximately 900 ft. The smooth curve in the figure is a 9-th order polynomial
fit to the data.
Assuming that the overpressure amplitude decayed with range according to the

relation
K

AzETZ_

where K is a constant, Reed (1969) noted that, at a fixed range, the amplitude of the
received waveform, Amp, scales with Wy according to the relaton

Amp = KW,
where K1 is a constant. As noted by Reed (1969) the 1/(R)1~2 range fall-off, rather than
the more normal acoustic 1/R fall-off, reflects the incorporation of those experiments

lacking a direct or refracted arrival or in which significant energy is coupled to the ground.

w7

ob
0 5 10 15 20 25

Scaled Height-of-Burst, 100's F(KT)''*

Figure 12. The ratio of the equivalent yield, free air burst, Wy to the chemical yield, W, as
a function of the scaled height-of-burst. [Figure based on data provided by Reed (1969).]

Although waveform data have not been published relevant to low-yield events
monitored by the Sandia National Laboratory, Reed (1969), in his investigation of the

climatology of airblast propagation from the NTS, has published recorded peak-to-peak
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signal amplitudes for all of the explosions conducted during the BUSTER and JANGLE,
TUMBLER-SNAPPER, UPSHOT-KNOTHOLE, TEAPOT, PLUMBBOB and
HARDTACK II test series and, in this connection, Table 9 provides a listing of the
explosions having a yield less than 4 KT for which actual recorded amplitude data is
available at a select number of station sites.

Table 10 presents peak-to-peak signal amplitude data as recorded at eight
microbarograph stations for the low-yield explosions of the BUSTER & JANGLE test
series. As indicated, both tropospheric and ionospheric arrivals were recorded at several of
the staions with the ozonospheric arrivals generally higher than the tropospheric arrivals.
As mentioned previously, the station ranges were not held constant throughout a given test
series and Table 11 provides a listing of station ranges for each of the four low yield
explosions of the BUSTER & JANGLE test series.

Tables 12 and 13 provide, respectively, similar data for the low-yield explosions
conducted during the TUMBLER-SNAPPER and UPSHOT-KNOTHOLE test series.

In a similar fashion Tables 14 and 15 provide, respectively, peak-to-peak amplitude
data and station ranges for the low-yield tests conducted during Operation TEAPOT.
Inspection of Table 14 shows that two of the stations (Bishop, CA and Inyokern, NV)
recorded both ozonospheric and ionospheric afrivals.

Tables 16 and 17 provide, respectively, peak-to-peak amplitude data and associated
station ranges for the PLUMBBOB test series and Tables 18 and 19 provide similar data

for the Operation HARDTACK-II test series.
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3.0 THE IMPLICATIONS OF PAST MONITORING EFFORTS ON
CURRENT INTERESTS FOR THE CTBT

Although classification restrictions prohibit a listing of all station locations and
performance details of the previous monitoring efforts, quite useful information has
recently been made available by Nicholson (1995) and by investigators at AFTAC [Clauter
and Blandford, 1996].

Nicholson (1995), in work based on an earlier investigation of the so-called 1979
"Alert 747" event [Nicholson and Olsen, 1980], modeled the performance of the USAEDS
infrasonic network as measured by probability of detection as a function of the explosive
yield and the distance between the test site and receiver location. The work was based on
data acquired at 30 stations from 60 explosions of known yield and, accordingly,
eliminated any possibility for the inclusion of falsé alarms. As noted by Nicholson (1995),
however, the data set of 781 observations was incomplete as not all stations were
operational for all of the events: i.e., the total number of possible observations is 1800 (60
x 30). Table 20 provides the number of observations arranged by yield-distance categories.

In analyzing the data set Nicholson (1995) applied the statistical analysis procedure
known as logit analysis and a maximum likelihood approach developed by Jennrich and
Moore (1975)vto derive a set of curves from which detection probability can be estimated
for a given explosive yield and source-to-receiver range. The details of the analysis are not
presented herein and only the results of the analysis are provided in Figure 13.

As indicated in the figure, the detection probability is estimated to be a nonlinear
function of the logarithm of the source-to-receiver distance and that for 90% probability of
detection, the source-to-receiver range should be less than or equal to roughly 800 km and

1300 km for 1 KT and 3 KT explosions respectively.
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Yield (KT)

1000-1999 .37 3 5 2 47

2000-2999 34 . 34

3000-3999 55 2 2 2 61

. 4000-4999 124 6 6 4 140
5000-5999 123 4 3 1 131

) 6000-6999 58 8 7 2 75
7000-8999 23 9 12 3 47

9000-10999 40 19 20 5 84

11000-14999 45 22 20" 1 88

15000-16999 17 9 19 35

17000-21000 24 9 6 39

TOTAL 580 91 20 781

Table 20. The number of atmospheric nuclear explosion events arranged according to yield-

94

distance categories. [Figure adopted from Nicholson (1995).]
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Figure 13. Detéction probability as a function of yield and source-to-receiver range based
on an analysis of 781 nuclear tests monitored by the USAEDS infrasonic network. [Figure

adopted from Nicholson (1995).]
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In related work, AFTAC has derived a very useful "pressure-range" curve which is
provided in Figure 14 and which has been developed by combining AFTAC data from
infrasonic measurements of all country atmospheric tests during the 1950's and early
1960's which were in the yield range extending from 0.2 KT to 122 KT and more recent
kiloton sized ANFO (ammonium nitrate and fuel oil) chemical surface explosions detonated
in the continental U.S. The amplitudes of the ANFO explosions were less than 6 KT

nuclear equivalent.
10% ¢ S —— S ———

10' L

Pressure
(Microbars)

10° |

107! 3

10-2 . —iea ) N ——a o
102 108 104
Distance (km)
Figure 14. The pressure-range curve developed by AFTAC which was constructed from
past infrasonic measurements of pressure waves from atmospheric nuclear explosions. The
figure is based on square root scaling of yield to 1 KT and the +'s refer to nuclear

explosions and the X's refer to ANFO data. [Figure provided by AFTAC {Clauter and
Blandford (1996)1}].

10°

To account for the different nuclear source yields, the observed zero-to-peak (not
peak-to-peak) pressure amplitudes were normalized to 1 KT by dividing the pressure
amplitudes by the square root of the yield. For the ANFO recordings, a yield of 0.62 KT

was assumed to be equivalent to 1 KT nuclear yield. As indicated in the figure, the
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logarithm of the scaled zero-to-peak amplitudes is linear with the logarithm of the source-
to- receiver range in km. The equation for the best least-squares fit to the data is given by

Log,,(P) = 1.92 + 0.5 Log,,(Y) - 1.47 Log,,(D) 4.1)
where P is the pressure in pbar, Y is the explosive yield in KT and D is the source-to-
receiver range in degrees.

In addition to the pressure-range curve, AFTAC has also constructed an empirical
single sensor noise curve which allows an estimation of sensor noise level in pbar given
the local wind speed in knots. The noise curve is shown in Figure 15 and was derived by
combining actual measured average annual and monthly noise levels in pbar from former
operational stations with known annual and monthly average wind speed values available
from the unclassified literature for meteorological stations near the infrasound measurement
sites. As indicated in the figure, the noise level is predicted to be a quadratically increasing

function of the wind speed. Also, as noted by Clauter and Blandford (1996), the best-fit

curve to the data implies a fundamental noise floor of 0.3 pbar. In the figure, the circles
4.0 v r v T —

single sensor noise in microbjars
n bod
o [=]

-t
o

0'0 2 —. 2 ]
0.0 5.0 10.0 15.0

wind speed in knots

Figure 15. Single sensor noise levels in pbar as a function of wind speed in knots. [Figure
provided by AFTAC {Clauter and Blandford (1996)}].
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represent the yearly means and the brackets the variability as measured by + one standard
deviation.

Given the pressure-range and sensor noise curves, Clauter and Blandford (1996)
utilized the "NETSIM" network performance program developed for use in the seismic
community to compute magnitude detection probability contours for networks of arbitrary
design and numbers of elements. The calculations assume that the signal and noise
amplitudes are log-normally distributed and the probability of detection is assumed to be of

the form

P, =R ® Log,(S;;) - Log,o(N;,) - Log,o(SNR,,)

i 1/2
2 2
(Gs,-,-k + Oy, )

where in the above, P is the probability of detection at the i-th station, for the j-th source

(4.2)

location and the k-th event, Rj is the reliability of the i-th station (assumed to be 95%), S is
the signal amplitude, N is the noise amplitude, SNR is the signal-to-noise ratio required for
a detection (assumed to be 1.5), ¢S and oN are the log standard deviations of the signal
and noise, respectively, and @ is the well known normal probability function.

Given the assumed detection model, and taking the log standard deviations of the
signal and noise each to be equal to 0.3 (based on empirical operational data), the predicted
magnitude-probability performance of the 60 element station under consideration for CTBT
monitoring is provided in Figure 16. The triangles in the figure represent the assumed
station locations and the yield-contours represent the minimum detectable yield if a 90%
probability of detection is required by at least two stations in the network. The figure
clearly illustrates that monitoring at the 1 KT level is feasible and, because of higher station
density, that yield estimation is better in the northern than in the summer hemisphere and
that detection is better over land than over water. For comparison purposes, Figure 17
providés the results of the same calculations for an assumed 50 element network and
comparison between Figures 16 and 17 illustrates the rather significant detection

improvement achieved by utilizing a larger number of stations.
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Figure 16. Magnitude-probability contours for a proposed 60 station CTBT infrasonic
monitoring network. Station locations are shown by the solid triangles and the contours

represent detectable yields under the requirement that there be a 90% probability of
detection by at least two stations. [Figure adopted from Clauter and Blandford (1996).]

Figure 17. Magnitude-probability contours for a proposed 50 station CTBT infrasonic
monitoring network. Station locations are shown by the solid triangles and the contours
represent detectable yields under the requirement that there be a 90% probability of
detection by at least two stations. [Figure adopted from Clauter and Blandford (1996).]
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In addition to the foregoing, Clauter and Blandford (1966) have also modeled
location uncertainty utilizing the model assumed for probability of detection (Eq 4.2) and
the measured standérd deviations for the speed of signal propagation and azimuthal
uncertainties. The location uncertainty was quantified in terms of the radius of uncertainty
circle under various different assumptions, e.g.; (1) travel time data not considered; (2) a
5% uncertainty in the travel time; (3) a2% uncertaihty in the speed of signal propagation.
For purposes .of illustration, Figure 18 presents location uncertainty results for the 60
station network under the assumption a 2% uncertainty in signal travel speed. As indicated
in the figure, the radius of uncertainty is approximately 100 km over most ocean areas and

approximately 225 km in the worst case.

Figure 18. Radius of circle uncertainty contours for a 60 station infrasound network under
the assumption of a 2% uncertainty in measured signal speed from the source to the
receiver. [Figure adopted from Clauter and Blandford (1996).]




4.0 DISCUSSION OF RESULTS

In the foregoing sections previous unclassified work dealing with the monitoring of
atmospheric nuclear explosions in the low-yield range of current interest to the monitoring
of a CTBT was reviewed. The detection performance of continental stations used to
monitor U.S. tests at the NTS indicates that maximum detection ranges for explosions of 1
KT can vary from 1350 km to 3585 km depending on the noise levels at a particular station
and on the environmental conditions along the propagation path.

The modeling work of Nicholson (1995), which was based on the utilization of 781
explosions recorded on the entire USAEDS system would seem, at first glance, to suggest
significantly shorter ranges: e.g., 800 km and 1300 km for 1 KT and 3 KT yield
explosions, respectively. However, it is important to keep in mind that the empirical
probability of detection curves were derived by averaging over a significant amount of data
and may not, accordingly, be representative of detection ranges which could be achieved
under the most favorable conditions.

The modeling work of Clauter and Blandford (1996), also based on the utilization
of data from the entire USAEDS system, suggests that a proposed 60 station infrasound
network can ensure detection at the 1 KT level with a location uncertainty of 100 km,
particularly if some of the four-element southern ocean stations are augmented with
additional stations to increase array gain. Given that the average station separation of the
proposed 60 element network is between 2000 km to 3000 kfn, it appears that the results of
Clauter and Blandford (1996) are in accord with the independent estimates of Christie
(1995) [not presented herein] suggesting that station spacing should not exceed 2500 km.

At project inception, it is parenthetically noted, the author was under the erroneous
assumption that the previously described programs involved with the monitoring of
atmospheric nuclear explosions were part of the well known VELA Program. In particular,
it was believed that the overall VELA effort was comprised of several categories or

"compartments" each of which was associated with a particular technology utilized by the
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program. For example, under VELA was the VELA Uniform segment which is exclusively
associated with the seismic monitoring effort [Kerr, 1985] directed toward the monitoring
of underground nuclear explosions. There were other compartments as well such as VELA
HOTEL and VELA SIERRA. As a result of the review, it has been established that VELA
HOTEL was associated with satellite monitoring and that VELA SIERRA was associated
with hydroacoustic monitoring. In fact, there was no compartment of VELA associated
with infrasonic monitoring per se and, indeed, the origins of infrasonic monitoring
significantly predate the establishment of the VELA Program. Said another way, infrasonic
monitoring was indeed a part of the VELA program but was not accorded a separate
compartment.

The VELA Program originated in 1958 at the time of the Geneva Conference of
Expert's discussions on the discontinuance of nuclear testing and, indeed, at this time it
was recognized that extant acoustic (or infrasonic) techniques worked and were well
understood.

With the advent of rockets, it was realized that tests in the upper atmosphere and
space were both feasible and probable. In fact, the first U.S. nuclear tests in the upper
atmosphere were conducted at about the time of the "Geneva Conference of Experts to
Study the Methods of Detecting Violations of Possible Agreement on the Suspension of
Nuclear Tests". The conference of experts recognized that the detection of a burst above
the atmosphere must involve techniques that are, on the whole, different from those used
for atmospheric bursts. The 1958 Conference directed that a more detailed study of the
problem be made by a Technical Working Group [the so-called "Panofsky Panel"]. The
conference of experts also, evidently, established another Technical Working Group which
focused on improving seismic monitoring [the so-called Berkner Panel"].

The recommendations of the "Panofsky Panel" provided for the establishment of
that portion of the VELA research program which was directed toward the detection of

upper atmospheric and space tests of nuclear weapons. The VELA Program , however,
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also incorporated other research directed toward the detection of tests at lower altitudes as
well as underwater.

Romney (1985) places the birth of the VELA Program as April 23, 1959 during a
meeting between President Kennedy's Special Assistant for Science and Technology (Dr
Killian), the Atomic Energy Commission Chairman (Mr. McCone) and the Deputy
Secretary of Defense (Mr. Quales) which "decided to implement the programs of research
recommended by these panels for improving national capabilitiés to detect and identify
foreign nuclear explosions conducted in the two difficult (upper atmospheric and
underground) environments." The name "VELA" (or "vigilance") Program evidently
occurred when the "Secretary of Defense assigned responsibility to the Advanced Research

Projects Agency."”
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